1,308 research outputs found

    Timeline Resource Analysis Program (TRAP): User's manual and program document

    Get PDF
    The Timeline Resource Analysis Program (TRAP), developed for scheduling and timelining problems, is described. Given an activity network, TRAP generates timeline plots, resource histograms, and tabular summaries of the network, schedules, and resource levels. It is written in ANSI FORTRAN for the Honeywell SIGMA 5 computer and operates in the interactive mode using the TEKTRONIX 4014-1 graphics terminal. The input network file may be a standard SIGMA 5 file or one generated using the Interactive Graphics Design System. The timeline plots can be displayed in two orderings: according to the sequence in which the tasks were read on input, and a waterfall sequence in which the tasks are ordered by start time. The input order is especially meaningful when the network consists of several interacting subnetworks. The waterfall sequence is helpful in assessing the project status at any point in time

    Performance of GMSK for telemetry and PN ranging under realistic conditions

    Get PDF
    In the frame of CCSDS activities, a system capable of simultaneously transmitting high rate telemetry and ranging has been studied in the last years. In this system the telemetry is transmitted through a GMSK modulator with the PN (Pseudo Noise) ranging sequence included as an additional phase shift. The receiver first estimates the transmitted telemetry bits, regenerates and removes the estimated GMSK signal from the received signal, and then estimates the ranging chips and, through a bank of correlators, the round trip delay of the received ranging signal. Ranging is an interfering signal which degrades the performance of the telemetry subsystem, while errors in the estimation of telemetry bits compromise the correct detection of the ranging chips. The first simulation results obtained by ESOC were presented at TTC 2010 in the paper “Analysis of GMSK for Simultaneous Transmission of Ranging and Telemetry” and were limited to ideal synchronization and to the case of a telemetry bit rate equal to the ranging chip rate. In this new paper we describe additional results obtained from the simulation of the complete system, including realistic synchronization, and for telemetry rates which are different from the chip rate. The paper will: 1) consider the effects of the receiver telemetry clock jitter on the regenerated GMSK signal and on the subsequent ranging receiver: it will be shown that regeneration through the Laurent OQPSK approximation or through a look-up table, which directly stores the GMSK phase for each combination of input bits, achieve good performance with low complexity; 2) discuss the effects of perfect synchronization between the transmitted telemetry and ranging signals: in this case, depending on the relative delay between the two signals, the recovered ranging clock may suffer from a bias, which corresponds to an error in the range estimation (lack of accuracy); 3) estimate the system losses when the telemetry bit rate is different from the ranging chip rate; 4) estimate the loss due to phase noise. The analysis will be limited to the case of GMSK with BTb=0.5 and ranging code T2B, which is the suggested scheme for deep space missions with demanding acquisition time requirements

    Dielectric study of the glass transition: correlation with calorimetric data

    Full text link
    The glass transition in amorphous poly(ethylene terephthalate) is studied by thermally stimulated depolarization currents (TSDC) and differential scanning calorimetry (DSC). The ability of TSDC to decompose a distributed relaxation, as the glass transition, into its elementary components is demonstrated. Two polarization techniques, windows polarization (WP) and non-isothermal windows polarization (NIW), are employed to assess the influence of thermal history in the results. The Tool-Narayanaswami-Moynihan (TNM) model has been used to fit the TSDC spectra. The most important contributions to the relaxation comes from modes with non-linearity (x) around 0.7. Activation energies yield by this model are located around 1eV for polarization temperature (Tp) below 50C and they raise up to values higher than 8eV as Tp increases (up to 80C). There are few differences between results obtained with WP and NIW but, nonetheless, these are discussed. The obtained kinetic parameters are tested against DSC results in several conditions. Calculated DSC curves at several cooling and heating rates can reproduce qualitatively experimental DSC results. These results also demonstrate that modelization of the non-equilibrium kinetics involved in TSDC spectroscopy is a useful experimental tool for glass transition studies in polar polymers.Comment: 13 pages, 2 tables, 10 figures; minor change

    Early goal-directed resuscitation of patients with septic shock: current evidence and future directions

    Get PDF
    Severe sepsis and septic shock are among the leading causes of mortality in the intensive care unit. Over a decade ago, early goal-directed therapy (EGDT) emerged as a novel approach for reducing sepsis mortality and was incorporated into guidelines published by the international Surviving Sepsis Campaign. In addition to requiring early detection of sepsis and prompt initiation of antibiotics, the EGDT protocol requires invasive patient monitoring to guide resuscitation with intravenous fluids, vasopressors, red cell transfusions, and inotropes. The effect of these measures on patient outcomes, however, remains controversial. Recently, three large randomized trials were undertaken to re-examine the effect of EGDT on morbidity and mortality: the ProCESS trial in the United States, the ARISE trial in Australia and New Zealand, and the ProMISe trial in England. These trials showed that EGDT did not significantly decrease mortality in patients with septic shock compared with usual care. In particular, whereas early administration of antibiotics appeared to increase survival, tailoring resuscitation to static measurements of central venous pressure and central venous oxygen saturation did not confer survival benefit to most patients. In the following review, we examine these findings as well as other evidence from recent randomized trials of goal-directed resuscitation. We also discuss future areas of research and emerging paradigms in sepsis trials

    A Plasma Channel Beam Conditioner for a Free Electron Laser

    Get PDF
    By "conditioning" an electron beam, through establishing acorrelation between transverse action and energy within the beam, theperformance of free electron lasers (FELs) can be dramatically improved.Under certain conditions, the FEL can perform as if the transverseemittances of the beam were substantially lower than the actual values.After a brief review of the benefits of beam conditioning, we present amethod to generate this correlation through the use of a plasma channel.The strong transverse focusing produced by a plasma channel (chosen tohave density 1016/cm3) allows the optimal correlation to be achieved in areasonable length channel, of order 1 m. This appears to be a convenientand practical method for achieving conditioned beams, in comparison withother methods which require either a long beamline or multiple passesthrough some type of ring
    corecore